Estimating Net Primary Productivity under Climate Change by Application of Global Forest Model (G4M)
نویسندگان
چکیده
Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of the forest is highlighted as a key sector for mitigating climate change. The objective of this research is to estimate changes on the net primary productivity of forest in South Korea under the different climate change scenarios. The G4M (Global Forest Model) was used to estimate current NPP and future NPP trends in different climate scenarios. As input data, we used detailed (1 km × 1 km) downscaled monthly precipitation and average temperature from Korea Meteorological Administration (KMA) for four RCP (Representative Concentration Pathway) scenarios (2.6/4.5/6.0/8.5). We used MODerate resolution Imaging Spectroradiometer (MODIS) NPP data for the model validation. Current NPP derived from G4M showed similar patterns with MODIS NPP data. Total NPP of forest increased in most of RCP scenarios except RCP 8.5 scenario because the average temperature increased by 5°C. In addition, the standard deviation of annual precipitation was the highest in RCP8.5 scenario. Precipitation change in wider range could cause water stress on vegetation that affects decrease of forest productivity. We calculated future NPP change in different climate change scenarios to estimate carbon sequestration in forest ecosystem. If there was no biome changes in the future NPP will be decreased up to 90%. On the other hand, if proper biome change will be conducted, future NPP will be increased 50% according to scenarios.
منابع مشابه
Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China
The current study used the Biome-Bio Geochemical Cycle (Biome-BGC) model to simulate water-use efficiency (WUE) of Piceacrassi folia (P. crassifolia) forest under four representative concentration pathway (RCP) scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was val...
متن کاملResponse of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California
The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed Evergreen Forest. Grassland expan...
متن کاملModel-based analysis of climate change impacts on the productivity of oak-pine forests in Brandenburg
The relationship between climate and forest productivity is an intensively studied subject in forest science. This thesis is embedded within the general framework of future forest growth under climate change and its implications for the ongoing forest conversion of pure pine forests into mixed oak-pine forests. My objective is to investigate future forest productivity at different spatial scale...
متن کاملImpact of Climate Change on Forests in India
Global assessments have shown that future climate change is likely to significantly impact forest ecosystems. The present study makes an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of Regional Climate Model of the Hadley Centre (HadRM3) using the A2 (740 ppm CO2) and B2 (575 ppm CO2) scenarios of Special Rep...
متن کاملSynergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global c...
متن کامل